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FORMULAS FOR MODAL DENSITY AND FOR
INPUT POWER FROM MECHANICAL AND FLUID

POINT SOURCES IN FLUID FILLED PIPES
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Simple expressions for the modal density of fluid filled pipes and for the input power
from mechanical and fluid point sources are derived. The derivations are based on a
previously reported, simplified theory for the radial–axial motion of fluid filled pipes. These
equations are recapitulated and criteria for their application are given. The accuracy of the
resulting expressions for modal density and input power are verified with a spectral
(frequency dependent) FE method. These FE calculations are based on the Arnold and
Warburton theory for thin walled cylinder vibration and Helmholtz equation for fluid
motion. The theory developed applies below half the ring-frequency and when higher order
fluid modes are cut off. Thus, as an example, for a water filled steel pipe with a diameter
of 300 mm, accurate predictions of modal density and input power are made for frequencies
up to approximately 1 kHz.
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1. INTRODUCTION

Vibrations in pipeworks often cause excessive noise radiation and may result in failure due
to fatigue. When examining this, it is, however, not a practical course of action to carry
out large scale strain measurement in pipeworks. Similarly, today it is not possible to make
full scale FE models of the high frequency vibrations of complete pipe systems because
of the overwhelmingly large models that are required. Therefore less demanding methods
are needed for screening pipe systems to determine potential vibration noise and fatigue
problems. This is equally important for design as for assessing existing pipeworks.

From an engineering point of view, a very attractive method to use for prediction of
vibration is SEA [1–3]. This method is quick to apply and requires only general
information about the structure investigated. For pipes it is natural to use the wave
approach to SEA. The input data required are then, for each pipe element, the loss factor
and the modal density and, for each coupling, the transmission factor. Also required are
the input powers from the sources of vibration. Methods for calculating transmission
factors in pipe–flange connections have been developed [4]. In the present work, simple
expressions for the modal density in straight fluid filled pipes and the input power from
mechanical and fluid point sources are derived. These expressions and those from reference
[4] are then successfully used for statistical energy analysis of a simple pipe structure [5].

The analysis depends heavily on the work presented in two previous articles by the
author [6, 7]. In reference [6] efficient routines for calculating the dispersion relations and
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forced response in straight fluid filled pipes are developed. The pipe-wall motion is
described by the Arnold and Warburton theory for thin walled cylinders [8] (the
self-adjoint variant of the Love–Timoshenko shell theory [9]). The fluid motion is described
by the Helmholtz equation and its radial dependence is approximated within cylindrical
segments by FE polynomial shapefunctions. The resulting dispersion relations are
compared with those found with the exact formulation by Fuller and Fahy [10], showing
good agreement. The solutions of the equations of motion thus achieved are then used as
base functions in a spectral finite element formulation. This method is a merger of the
dynamic stiffness method and the finite element displacement method. Elements are
formulated and assembled as in the standard FEM, while the trial functions are the local,
frequency dependent, solutions of the equations of motion. In the present work, the
routines presented in reference [6] are used to assess the accuracy of the approximate
expressions developed for modal density and input power. To perform these comparisons,
the spectral FE formulation for straight fluid filled pipes is here amended with expressions
for forced response from fluid sources.

In reference [7] simplified equations of motion for the radial–axial vibrations of fluid
filled pipes have been presented. The dynamic behaviour of a pipe is quite different for
frequencies above and below the ring-frequency, this frequency occurring when the
in-plane extensional wavelength in the pipe is equal to its circumference. Pipes for
conveying fluids most often have diameters in the range 1 cm–1 m, so, for steel pipes the
ring-frequency is in the range 160 kHz–1.6 kHz. Consequently, many noise and vibration
problems are related to frequencies well below the ring-frequency. For such frequencies
there is, for each trigonometric order, n=1, 2, 3, . . . , only one vibration mode that may
propagate. Upon scrutinizing the cross-sectional mode shapes for the propagating modes,
it is seen that they are almost as if inextensional: that is, almost without circumferential
in-plane strain. By assuming this to be valid while restricting the analysis to lower
frequencies, for which the axial wavelength is long compared to the cylinder radius and
for which higher order fluid modes are cut off, the simplified theory is derived. It is found
that the equations of motion for the radial–axial vibration of straight fluid filled pipes, for
each trigonometric order, are equal to those for a Timoshenko beam on a Winkler
foundation. This foundation stiffness describes the circumferential flexural stiffness of the
pipe-wall. To make the present work self-contained, in section 2 there is a brief
recapitulation of the simplified theory and the criteria for its application. A spectral FE
formulation based on this theory is also presented and the application to forced response
problems, in section 4, gives additional insight to the theory’s potential and limitations.

In the present work, the equivalent beam theory is the basis for the derivation of modal
density and input power in the propagating radial–axial waves. This means that the results
do not apply when higher order fluid modes are cut on, nor for frequencies above half
the ring-frequency. Also, the axisymmetric, n=0, motion is not covered by the theory in
reference [7] and is not accounted for in the present work. The dynamics of the
axisymmetric modes are so different from that of the radial–axial modes considered in this
paper that they deserve a special presentation.

Previously, Heckl was the first to calculate approximate formulas for the mode count
and modal density in cylinders [11]. Most recently, Langley, using Donnell theory while
neglecting the in-plane inertia, derived the modal density and mode count in cylindrical
shells [12]. In both these works the circumferential wavenumber is treated as a continuous
function of frequency. Often, pipes are very long and only a few circumferential modes
can propagate. If so, there is a large increase in the mode count at those frequencies when
an additional circumferential mode is cut on. The expressions derived in the present work
account for this increase.
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The modal density for fluid filled pipes has not previously been calculated. For
vehicle-related problems, statistical energy analysis is often applied, with the cylindrical
structure and the contained fluid treated as different subsystems, and thus having
independent mode counts [13]. This is also the approach used for the analysis of high
frequency vibrations of gas filled pipes [14]. For frequencies below cut-on of higher order
fluid modes, however, the analysis in references [6, 7] suggests that the appropriate
approach is to use ‘‘wet’’ modes: that is, to treat the fluid filled pipe as one structure.
Perhaps, though, one should distinguish between waves of different trigonometric order,
n, or between waves of ‘‘type 1’’ and ‘‘type 2’’ [12], (see section 3.2.1 below). By using the
equivalent beam theory this may be accomplished.

The frequency-averaged point mobility of thin walled cylinders was calculated by Heckl
[11]. Fuller [15] considered a fluid filled pipe using Donnell theory for the cylinder and an
analytical description for the fluid reaction to cylinder motion. Fuller used the results in
reference [10] to find the dispersion relations-requiring the solution of a non-linear
eigenvalue problem- and then calculated the response in the pipe using complex integration
theory. Because of the complexity of the mathematics used and the numerical difficulties
that may occur when solving non-linear problems, the approach is primarily useful in a
research situation. Möser et al. derived closed form approximations of the frequency
average of the real part of the mobility [16]. They used a beam approximation below the
cut-on of the n=2 mode and Heckl’s result [11] at higher frequencies while reducing the
mobility accounting for the inertia of the fluid expressed as a function of n. In this inertia
term, however, the frequency dependence of n is not clear. Also, the increase in modal
density resulting from the increased inertia is not accounted for. As discussed above,
Finnveden formulated spectral finite elements to be used for forced response analysis of
fluid filled pipes [6]. In the present work, the results obtained by using this method are
compared to those arrived at by using the beam theory presented in section 2. Also in the
present work, frequency averages of the real part of the point mobility are calculated by
using results from the equivalent beam theory. It is found that frequency band averages
of the input power to a point-excited fluid filled pipe are calculated within a fraction of
a second on a PC, with good accuracy.

To the author’s knowledge, the only previous calculation of the high frequency response
of a fluid filled pipe to fluid excitation was made by Fuller [17], using the same approach
as in reference [15]. In the present work, the efficient spectral finite element formulation
for pipes [6] is developed to handle fluid excitation. This excitation is also included as a
generalized force in the equivalent beam theory. Comparisons are made showing that the
modal mobility derived with the beam theory is very accurate at frequencies below and
around a radial–axial mode cut-on frequency, while there are gross errors at even higher
frequencies. The total point mobility, however, is predominantly governed by the modes
that are near cut-on, and is therefore accurately calculated by the beam theory up to
frequency limits given in section 2. Thus, as an example, for a water filled steel pipe with
a diameter of 100 mm, the simple theory derived in this work is accurate for calculating
the input power from mechanical and fluid point sources for frequencies up to
approximately 3 kHz.

2. EQUIVALENT BEAM THEORY

2.1.        

In reference [7] simplified equations describing the propagating radial–axial waves in
fluid filled pipes were presented. As these equations form the basis of the work presented
here, they are briefly reiterated.
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In thin walled cylinder theory the equations of motion are formulated by using a Fourier
decomposition of the circumferential dependence of the displacements and assuming plane
stress in the cylinder cross-section according to the Kirchhoff hypothesis. The
displacements are [6]

ux =(u− z 1w/1x) cos (nf), uf =(v+ z(v+ nw)/R) sin (nf), uz =w cos (nf), (1)

where R is the cylinder radius and where u, v and w are the displacements in the x, f and
z directions on the cross-sectional mid-plane; see Figure 1.

In reference [7] it was found that the circumferential in-plane motion, for propagating
radial–axial waves n=1, 2, 3, . . . , is almost as if inextensional. Assuming this, v=−w/n.
The analysis is then restricted to lower frequencies, for which the non-dimensional
wavenumber (axial wavenumber times radius) is not large and for which higher order fluid
modes are cut off. Thus, the motion of fluid filled pipes is given by

EIn 12u/1x2 =GAKn (u+ 1w/1x)− rv2Inu,

GAKn$ 1

1x0u+
1w
1x1+Cn

12w
1x2%=(Kw −v2Me )w, (2)

where stationary time dependence of the form e−ivt is assumed, where E is the Young’s
modulus, G is the shear modulus and r is the density, and where

u= n2u/R. (3)

Also in equation (2), the cross-sectional area A, the equivalent area moment of inertia In ,
the equivalent shear factor Kn , the equivalent mass per unit length Me , stiffness Kw and
the factor Cn are given by

A=2pTcR, Kn =1/(2n2), In = Iy /n4, Iy = pTcR3,

Me = rA/201+
1
n2 +

2m

n 1, Kw = b
EA/2
1− n2 0n2 −1

R 1
2

,

Cn =2b(n−1/n)2/Kn . (4)

Here Tc is the shell thickness, n is the Poisson ratio and b and m are non-dimensional
numbers for the ratio of shell thickness to radius and for the ratio of fluid mass to shell
mass:

b=T2
c /12R2, m=Rrf /2Tcr. (5)

rf is the fluid density.
In equation (2), the term proportional to Cn describes the restraint against twist of the

pipe wall. For thin walled pipes, low order n, and/or low frequencies, this term may be

Figure 1. The cylinder co-ordinate system.
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neglected. Equations (2) are then equal to those for a Timoshenko beam on a Winkler
foundation having stiffness per unit length, Kw . This ‘‘foundation stiffness’’ describes the
circumferential flexural stiffness of the pipe-wall.

For lower frequencies, equations (2) are simplified to be as those for an Euler beam on
a Winkler foundation:

EIn 14w/1x4 +Kww−v2Mew=0, u=−1w/1x. (6)

Equations (2) and (6) also apply when losses proportional to either stiffness or inertia are
present: that is, they apply equally when

E=E0(1− ihe ), G=G0(1− ihs ), r= r0(1+ ihv ), rf = rf0(1+ ihf ). (7)

2.1.1. Wavenumbers
When using the equivalent Timoshenko beam theory (2), the propagating wavenumbers,

for the mode with circumferential non-dimensional wavenumber n, are given by

knR=[H+[ ][H2 +M(Q−V2
1 )]1/2]1/2, (8)

where V1 is

V1 =vR/zE/r, (9)

and where

H=(M+V2
1 −QCn /(1+Cn ))/2,

M=(v2Me −Kw )R2/(GAKn (1+Cn )),

Q=(GAKnR2)/(EIn )= n2G/E. (10)

The wavenumbers resulting from the application of the equivalent Euler beam theory,
equation (6), are similarly given by

knR=R$v2Me −Kw

EIn %
1/4

= n[V2
1 (1+1/n2 +2m/n)− b(n2 −1)2]1/4. (11)

Note, in accordance with the suggestion in reference [7], that the rod value of the axial
rigidity is used and thus, for convenience, the parameter V1 is introduced. From thin walled
shell theory, upon assuming plane stress, it appears that the plate value should be used
instead, this being a factor 1/z1− n2 larger. While no theoretical justification for the
decrease in stiffness has been found, it was concluded in reference [7] that the results
obtained by using equations (8) and (11) will agree exactly with those found by using
accurate thin walled cylinder theory when the frequency tends to zero. Thus, the previously
reported error in the equivalent Euler beam theory [18] (dependent on the Poisson ratio)
disappears.

The parameter V1 is also found in reference [12]. Here, in the discussions and in the
figures, however, the standard non-dimensional frequency parameter V will be used:

V=vR/cL , c2
L =E/r(1− n2), V2 = (1− n2)V2

1 . (12)
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2.1.2 Criteria for application
In reference [7] the results of numerical experiments suggested that equations (2) are used

with good accuracy when the non-dimensional axial wavenumber knR is not larger than
the non-dimensional circumferential wavenumber, n: that is, for frequencies

VQ 1/z1+1/n2 +2m/n. (13)

Similarly, the Euler beam equation (6) applies for frequencies below a tenth of this.
Both equations (2) and (6) are valid only up to about half the cut-on frequencies for

the higher order fluid modes. For n=1, the most restrictive case, this limiting frequency
is approximately given by

V=(1·8/2)cf/cL, (14)

where cf is the sound speed in the fluid.
Finally, for frequencies close to the ring-frequency, the assumption of inextensional

circumferential in-plane motion is not valid. Hence, the equivalent beam theories are not
likely to be valid above a third of, or perhaps half of, the ring-frequency.

2.2.    

In section 4, the forced response of pipes excited by mechanical point forces and fluid
monopole sources are calculated. For the equivalent Timoshenko beam theory, this is done
with the dynamic stiffness method developed in reference [19]. When using this method
the functional, similar to the Lagrangian, which is stationary for true motion of the system
is needed. Considering equations (2) shows that it is

Lp =g $EIn
1ua

1x
1u

1x
+GAKn0ua +

1wa

1x 10u+
1w
1x1

+GAKnCn
1wa

1x
1w
1x

+(Kw −v2Me )waw− rv2Inu
au% dx. (15)

The superscript a denotes the complex conjugate of the displacements in an adjoint,
negatively damped, system. Without losses this would be the complex conjugate of the
displacements and, in this case, Lp would be the Lagrangian. The formulation for
non-conservative motion when using an adjoint system was proposed in reference [20]. It
has been used by Gladwell [21] and Morse and Ingard [22]. Its application to beam
structures has been discussed in some detail in reference [19] and the application to fluid
filled pipes has been demonstrated in reference [6].

The base functions, used in the spectral finite element formulation, are derived as the
solutions of the equations of motion corresponding to the functional Lp: that is, the
solutions of equations (2). When expressing these equations as a set of coupled first order
ordinary differential equations, it is found that expanding in the derivatives of w results
in numerical problems at lower frequencies, when the in-plane shear is negligible. Instead,
the derivative of w is expressed as the difference between the ‘‘shear angle’’ and u, so the
following definitions are made:

m= 1u/1x; g= u+ 1w/1x. (16)

These equations and those resulting when they are inserted into equations (2) are a set
of four first order ordinary differential equations. Upon assuming solutions of these of the
form exp (a, x), a linear eigenvalue problem results which is solved by standard methods.
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The base functions thus achieved are used as trial functions in a spectral finite element
formulation for arbitrarily long pipes as in reference [19], or [6].

3. MODE COUNT AND MODAL DENSITIES

3.1.  

In uni-axial, prismatic, waveguide systems the resonances occur approximately when

kL=Np, (17)

where k is a wavenumber in the direction of the waveguide, L is the length and N is any
positive integer. The non-dimensional Helmholtz number, kL, is a measure of the size of
the waveguide. The accuracy of the expression (17) depends on the boundary conditions.
However, the magnitude of the error in the Helmholtz number is always less than p/2, so
the relative error in equation (17) diminishes for large waveguides. For thin walled
cylinders, equation (17) is exact if the boundary conditions are ‘‘simply supported’’: that
is, if they are 1u/1x= v=w= 12w/1x2 =0. Also for a fluid filled cylinder, equation (17)
is exact, if the cylinder is simply supported and if the fluid obeys pressure release
conditions, p=0, at the pipe ends.

The mode count, Nc =Nc (v), is the number of modes having resonance below the
frequency v. Consider a fluid filled pipe at frequencies below the cut-on of higher order
fluid modes and below the cut-on of the n=1 torsional mode at V1 0·7. At those
frequencies, there is only one real solution of the dispersion relations for each ne 1. Hence,
for simply supported and pressure release boundary conditions, if the mode count is
considered as a continuous variable of the Helmholtz number, it is

Nc =2/p s
nmax

n=1

kn (v)L, (18)

where kn is the wavenumber for the trigonometric order n and where the factor of two
signifies that there are two modes of vibration in a cylinder having equal wavenumbers.
The summation is for the modes with cut-on frequencies below the frequency considered.
When using the equivalent beam theories (or the Flügge theory and neglecting terms of
the order b2 [23]) while assuming frequencies well below cut-on of higher order fluid modes,
nmax is given by

nmax =max (n): b
n2(n2 −1)2

1+ n2 +2nm
QV2. (19)

For an in-vacuo cylinder, dimensional analysis shows that the non-dimensional
wavenumber, knR, is a function of only n, n, b and V. The influence of the Poisson ratio
on resonance frequencies is small [24], so the numerical examples below are restricted to
n=0·3. The normalized mode count, Nn , is here defined as

Nn =Tc/LNc. (20)

Apart from the slight dependence on n, as nmax is determined by b and V, Nn is a function
of only these two non-dimensional numbers.

Heckl calculated approximate formulas for the mode count and modal density in
cylinders [11]. Langley, using Donnell theory while neglecting the in-plane inertia, derived
the modal density and mode count in cylindrical shells [12]. For frequencies below the ring
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Figure 2. The normalized mode count in cylinders. · · · , Equation (21); ----, equation (22); –––, Arnold and
Warburton theory; a, Tc =R/20; b, Tc =R/60; c, Tc =R/180.

frequency, the expressions for the normalized mode counts are [25, Table V.1] and [12,
equations (10) plus (11)]

(Nn )Heckl =3z3V3/2/2p, (21)

(Nn )Langley =z12(1− n2)/pg
p/2

acoszV1

[V2
1 − cos4 u]1/2 du. (22)

Notably, both these expressions for the normalized mode count are independent of b. The
normalized mode counts according to Heckl and Langley are shown in Figure 2. Also
shown are the exact (i.e., according to the Arnold and Warburton theory) results for
cylinders with thickness Tc =R/20, Tc =R/60 and Tc =R/180. Besides being
approximately 18% low, the results of Heckl agree with those of Langley at lower
frequencies. As stated by both authors, for frequencies where only the beam mode is cut
on, the results from equations (21) and (22) deviate largely from those achieved by using
a more accurate cylinder theory. Both equations (21) and (22) are derived with the mode
count considered as a continuous function of not only the axial Helmholtz number but
also of the circumferential wavenumber. Thus, no account is taken of the increase of the
mode count at the cut-on frequencies. In addition to this, equations (21) and (22)
underestimate the average mode count at lower non-dimensional frequencies, most
probably as the Donnell theory overestimates the cut-on frequencies for small n.

3.2.    

In SEA, the modal density is central. It is defined for a frequency band between
frequencies vl and vu as

ndens =
Nc (vu )−Nc (vl )

vu −vl
. (23)
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Often the limit vu:vl is taken, thus resulting in an expression valid not only in frequency
bands but for a particular frequency. However, this expression is singular at cut-on if the
mode count is based on equation (18).

The normalized modal density is here defined as

nn =
TccL

LR
ndens =

Nn (Vu )−Nn (Vl )
Vu −Vl

, (24)

which, if the mode count is as in equation (18), also may be written as

nn =
2
p

Tc

R
s

n=1

kn (Vu )R− kn (Vl )R
Vu −Vl

, (25)

provided that the convention that kn (v)=0 if v is below the cut-off frequency for mode
n is adopted.

The normalized modal density is a function of only b, n and V. It is calculated by using
the mode count expression (22) and equation (24). It is also calculated by equation (25),
in which case the wavenumbers are calculated with the Arnold and Warburton theory and
with the equivalent Timoshenko beam theory, equation (8). For a cylinder with wall
thickness Tc =R/60, in Figure 3 are shown swept one-third octave band averages of the
normalized modal densities: that is, at each frequency is shown the third octave band
average resulting when this frequency is the centre frequency in the band. The results
confirm the conclusions drawn above. The Donnell theory underestimates the modal
density for frequencies when kR is small, that is, for a pipe with Tc =R/60, for frequencies
below a tenth of the ring frequency. The equivalent beam theory predicts the modal density
accurately at frequencies below a third of the ring-frequency. Consequently, in contrast
to the thin walled shell structures often found in vehicles, for pipe systems the modal

Figure 3. Swept one-third octave band averages of normalized modal density in a cylinder with thickness
Tc =R/60. –––, Arnold and Warburton theory; · ·, equivalent Timoshenko beam; ----, derived from equation
(22).
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density is most easily found by using equation (25), with the wavenumbers calculated by
equation (8) or (11).

3.2.1. Type 1 and type 2 modes
Langley distinguished between ‘‘type 1’’ waves, having motion restricted mainly by the

flexural stiffness of the cylinder wall, and ‘‘type 2’’ waves having motion restricted mainly
by in-plane stiffness [12]. The axial wavenumbers for type 1 waves decrease with increasing
circumferential wavenumber—that is, with increasing n—whereas the opposite is true for
type 2 waves. Langley classified these types according to the axial wavenumber’s
dependence on the circumferential wavenumber. That is, with the axial wavenumber
considered to be a continuous function of n, waves with n larger than that given by
1kn /1n=0 are considered as type 1. Perhaps some physical insight is given—certainly
computational simplicity is gained—if they are classified according to which stiffness
dominates. With reference to Figures 2 and 3 in reference [7] and to equation (6), a
vibrational mode is type 1 at cut-on where the circumferential flexural stiffness dominates.
At somewhat higher frequencies, the cross-sectional bending—that is, axial in-plane
stiffness—becomes the most important term and the wave is of type 2. For the
inextensional motion considered here, the restraints against motion from these two terms
are equal when the wavenumber is such that Kw =EInk4

n . Near cut-on, the Euler beam
approximation for the wavenumbers is accurate. By using this, the criterion is found to
be such that at cut-on and up to z2 times this frequency a wave is type 1 whereas for
even higher frequencies it is type 2.

3.3.      

The modal density for fluid filled pipes has not previously been calculated. Dimensional
analysis shows that the normalized mode count is a function of b, n, V, cf /cL and m. Below
half the cut-on frequency of higher order fluid modes, the wavenumbers are independent
of cf /cL , there is only one propagating wave for each ne 1 and the equivalent beam
theories apply up to frequency limits given in section 2.1.2. Thus, the modal density for
fluid filled pipes is found from equation (25), using the wavenumbers given either by
equation (8) or (11). The normalized modal densities for water filled steel pipes with wall
thickness Tc =R/20 and Tc =R/180 have been calculated, and in Figure 4 are shown
results obtained with the beam theories and with the routines in reference [6]. It is seen
that the beam theories predict the modal density accurately for frequencies well above
those given in section 2.1.2.

3.3.1 Approximate modal density
The beam theories efficiently provide good estimates of the modal densities. In many

situations it is, however, beneficial to have simple closed form expressions, explicitly
showing the parameter dependence. To that end the results by Langley [12] are modified
to account approximately for fluid loading.

By using the Donnell theory while neglecting the in-plane inertia, the dispersion relations
for cylinders have been simplified in reference [12], to become

V2
1 =G=G(kR, n, b, n), (26)

where the explicit expression for G is given in equation (1) of reference [12]. Similarly, if
the fluid loading is included as in the derivation of the equivalent beam theories (by
increasing the cylinders radial inertia), the dispersion relation is

(1+2m/n)V2
1 =G. (27)
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Figure 4. (a) The swept one-third octave band averaged normalized modal density in a water filled steel pipe,
Tc =R/20. –––, Arnold and Warburton theory; · · ·, equivalent Euler beam; ---, equivalent Timoshenko beam.
(b) As (a), but Tc =R/180.

The modal density, expressing the increase of the mode count, is largely determined by
the modes with large n, being just above cut-on. From the Donnell theory, the cut-on
frequencies are

V2
cut-on =

bn4

1+1/n2 +2m/n
. (28)

The fluid loading terms in equations (27) and (28) are important only if 2m/nq 1. Upon
assuming this, those n that are close to cut-on are approximately expressed as
n1 (2mV2/b)1/5. Inserting this expression into the left side of equation (27) yields the
dispersion relation as in equation (26), but with a different scaling of the frequency:

(1+2m(2mV2/b)−1/5)V2
1 =G. (29)
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The analysis by Langley may now be employed to find the mode count. If the slight
frequency dependence of the fluid loading is neglected when the derivative of the mode
count with respect to frequency is taken, then the modal density is also calculated as in
reference [12]. Applying this yields the normalized modal density as

nn =
TccL

LR
ndens =Flz6FlV1/pK(0·5+FlV1/2), (30)

Fl =z1+2m(2mV2/b)−1/5, (31)

where K is the complete elliptic integral of the first kind. With an error that is less than
0·5% for frequencies FlV1 Q 0·3, a linear curve fit is used to approximate the elliptic
integral. The normalized modal density is then approximated as

nn =Flz6FlV1/p(1·85+FlV1/2). (32)

The modal density has been calculated in octave bands by using this expression and
equation (25), in which case the wavenumbers are found by the accurate routines in
reference [6]. In Figure 5 the results are presented for water filled steel pipes with wall
thickness Tc =R/20 and Tc =R/180. It is seen that for frequencies from around the cut-on
of the n=2 mode up to approximately a third of the ring frequency, the approximation
(32) is quite accurate, on the average.

4. INPUT POWER FROM SIMPLE SOURCES

4.1.   

Consider an infinite fluid filled pipe excited by a point force, at x= x0, f=0,
having magnitude f0 in the radial direction. When using the equivalent Timoshenko beam

Figure 5. The swept one-third octave band averaged normalized modal density in a water filled steel pipe,
upper, Tc =R/20; lower, Tc =R/180. –––, Arnold and Warburton theory; ---, equation (32).
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T 1

Geometrical and material parameters

Young’s modulus, Density of steel, Density of water, Sound velocity of
E (N/m2) r (kg/m3) rf (kg/m3) water, cf (m/s)

210×109 7800 1000 1500

R/Tc =20 R/Tc =60 R/Tc =180

Wall thickness, Tc (mm) 7·5 2·5 0·8333 . . .

Loss factors, he = hs = hv = hf =0·01; cylinder radius, R=0·15 m.

theory, the equations of motion, for each n, are as in equations (8) but with a right hand
side:

EIn 12u/1x2 −GAKn (u+ 1w/1x)+ rv2Inu=0,

GAKn$ 1

1x0u+
1w
1x1+Cn

12w
1x2%−(Kw −v2Me )w=−f0d(x0 − x). (33)

These equations have been solved by the spectral finite element presented in section 2.2,
for comparison of the results with those calculated by using the routines in reference [6].
The calculations were made for a water filled steel pipe with wall thickness Tc =R/60; the
data are shown in Table 1. The magnitudes and phases of the point mobilities for the n=1
and n=3 modes are shown in Figures 6 and 7. At lower non-dimensional frequencies the
results are in excellent agreement. For the n=1, beam mode, the result deviates largely
from around the limiting frequency for the equivalent Euler beam theory. For the n=3
mode, the arguments of the mobilities start to deviate almost immediately after cut-on

Figure 6. The point mobility for the n=1 mode in a water filled steel pipe, Tc =R/60: upper, magnitude;
lower, argument. –––, Arnold and Warburton theory; ----, equivalent Timoshenko beam.
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Figure 7. As Figure 6, but n=3.

whereas the magnitudes are approximately equal up until the limits given in section 2.1.2.
The beam theory predicts the reactive part of the mobility to be of mass character while
the cylinder theory at higher frequencies predicts a stiffness character, most probably
caused by the flexibility of the higher order non-propagating evanescent modes. The
displacements of these modes are neglected in the beam theory.

Another source of error for the beam theory arises from the approximation of the radial
dependence of the fluid velocity potential (equation (43) of section 4.2.2), resulting in a
frequency independent fluid modal mass. The propagating radial–axial modes are
subsonic; for these modes the fluid radial wavenumber is imaginary having roughly the
same magnitude as the axial wavenumber. This means that the exact solution for the fluid
motion is a modified Bessel function of the first kind with an argument that is small at
cut-on, then increasing with increasing frequency (see reference [10]). Thus, well above
cut-on the fluid velocity will decrease (approximately) exponentially away from the
pipe-wall. As frequency increases, the rate of decay increases and less fluid takes part in
the motion, so the fluid inertia for the propagating modes will decrease.

The total point mobility has been calculated with the beam theory and the routines in
reference [6]. The results are compared in Figure 8, showing an excellent agreement up to
a third of the ring frequency. At this frequency there are nine waves which are cut-on, and
as the calculations were made considering n=1, 2, . . . , 25, the approach with the routines
in [6] requires quite extensive calculations. When using the beam theory, however, the
results for 2000 frequency points are found within a few minutes on a PC.

To sum up, the equivalent Timoshenko beam theory predicts the point mobility for a
cross-sectional mode accurately below and around its cut-on frequency. For frequencies
well above the cut-on the restraints on motion imposed in the derivation of the equivalent
beam theory are apparently too restrictive. Thus, at high frequencies the magnitude of a
cross-sectional mode’s mobility is underestimated and the phase is in gross error. The total
point mobility, however, is predominantly given by the mobility of those modes that are
near cut-on. For these modes the equivalent Timoshenko beam theory applies.
Consequently, up to the frequency limits given in section 2.1.2, the total point mobility
is accurately calculated by the beam theory.



100

1.5

–1.5

10–3

Non-dimensional frequency

A
rg

u
m

en
t 

of
 p

oi
n

t 
m

ob
il

it
y 

(r
ad

)

–1.0

–0.5

10–2 10–1

10–2

10–5

M
ag

n
it

u
de

 o
f 

po
in

t 
m

ob
il

it
y 

(m
/N

s)

10–4

10–3

1.0

0.5

0.0

(b)

(a)

      719

4.1.1. Input power
To determine the input power from the point force, only the real part of the input

mobility is needed. The frequency average of this function is found by employing the mode
of analysis in section v.4.c of reference [25]:

Re(Y)= s
nmax

n=1

p/2
L[2Me + =un /wn =22rIn ]

Nc (vu )−Nc (vl )
vu −vl

. (34)

Here, nmax is found either from equation (19) or, perhaps more conveniently, by just
calculating the wavenumbers for increasing n, stopping when no propagating mode is
found. The factor of two in the inertia terms accounts for the fact that the mass per unit
area in the pipe is twice Me . In equation (34), un and wn are elements of the eigenvector
for the propagating mode with trigonometric dependence n. These eigenvectors may be

Figure 8. (a) Magnitude of point mobility in a water filled steel pipe, Tc =R/60; –––, Arnold and Warburton
theory; ----, equivalent Timoshenko beam. (b), As (a) but argument of mobility.
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Figure 9. the swept one-third octave band averages of the real part of the point mobility in a water filled steel
pipe, Tc =R/60. –––, Arnold and Warburton theory; ----, equivalent Timoshenko beam; · · · , equivalent Euler
beam.

found from the homogenous version of equation (33). If, instead, the Euler beam
approximation of the pipe is considered, then un =−iknwn . This approximation gives an
overestimation of the axial in-plane inertia at higher frequencies. Near cut-on, however,
where a mode’s contribution to the real part of the mobility is largest, the errors are small.
By using this approximation, equation (34) is simplified to become

Re(Y)=
1

rcLA
s

n=1

1
(1+1/n2 +2m/n+(knR/n2)2)

kn (Vu )R− kn (Vl )R
Vu −Vl

, (35)

where A is the cross-sectional area and where the summation extends over those n for
which there is a propagating mode. The wavenumbers may be found from either equation
(8) or (11), or with a more accurate theory. When using any of the equivalent beam
theories, this expression could be evaluated within a fraction of a second in a PC. In Figure
9 the one-third octave band averages of this function are compared to the results given
by using the spectral FE formulation in reference [6]. The results from the equivalent Euler
beam theory are good near the cut-on frequencies where the point mobility is governed
by type 1 modes [12] while, well above cut-on, where the type 2 modes are important, the
input power is underestimated. The spectral FE calculations were made for a quite ‘‘lossy’’
pipe, see Table 1. This explains why there are increases in the real part of the point mobility
just below cut-on. By modifying equation (35) using the approach in a recent article by
Langley this small discrepancy may be avoided [26]. Besides this, results from equation
(35), with wavenumbers calculated by equation (8), deviate from results obtained by using
accurate thin walled cylinder theory by no more than 21 dB. It is seen that for calculation
of frequency averaged input power, both beam theories may be used with good accuracy
up to the frequency limits given in section 2.1.2.
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Figure 10. The real part of the point mobility in a water filled steel pipe Tc =R/60. –––, Arnold and Warburton
theory; · · · , swept one-third octave band averages; ----, equation (36).

4.1.2. Approximate expression for input power
By employing the mode of analysis in section 3.3.1, the expression for the point mobility

could be even further simplified. That is, in equation (35) the in-plane inertia of the cylinder
is entirely neglected and the n-dependence of the fluid loading is approximated as in
equation (29). Upon doing this, the real part of the point mobility and the input power
from the point force are found to be given by

Re(Y)= nn /(4rcLT2
c F2

l ), Pin = =f0=2 Re(Y), (36)

Figure 11. The octave band averaged input power in water filled steel pipes from a point force with unit
amplitude; upper, Tc =R/20; lower, Tc =R/180. ——, Arnold and Warburton theory; ----, equation (36).
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where the normalized modal density, nn , is defined in equation (24) and is calculated as
in equation (32). The approximation of the relative contribution to the inertia from fluid
loading, Fl , is given in equation (31). Notably, the fluid loading increases the modal density
by a factor (Fl )3/2 while the level of the mobility is decreased by the fluid inertia: that is,
by a factor F2

1 . To some extent, these two effects cancel each other.
In Figures 10 and 11 the results given by using the approximate formula (36) are

compared to the results given by using the accurate thin walled cylinder theory. It is seen
that, once the n=2 shell mode is cut-on, equation (36) is accurate enough for prediction

4.2.      

4.2.1. Monopole excitation
Consider a monopole source, within the fluid in the pipe. For a lossless fluid, if this

source were in free field, the equation of motion would be [22, equation (7.1.14)]

92p+(v/cf )2p=−q0d(r), (37a)

and the resulting sound pressure, p, at distance r from the source is

p(r)=
q0

4pr
eiv(r/cf − t). (37b)

With such a source in a pipe, the functional L [6, equation (28)] describing the motion
of a fluid filled pipe is adjusted to be L=Lcyl −LF −Bfc , where

LF =Lf +g $(caq0 +cq0)
v(1+ ihf )

d(x− x0)d(r− r0)
r % dx r dr. (38)

Here the functionals Lcyl and Lf describe the homogenous vibrations of the cylinder and
the fluid, Bfc describes the coupling and c is an analogue to the fluid velocity potential
and is given by

p= rfv cos (nf)c. (39)

In equation (69) of reference [6] a trial function for c in a pipe element of length 2L
is assumed:

c(x, r)= g ( Bf ( BF ( diag (exp(ax− apL)) ( A ( [VT
1 VT

2 ]T,

g(r)= [(r/R) (r/R)2 · · · (r/R)Nf], (40)

where Nf is the number of d.o.f. used to describe the radial dependence of the fluid motion
and where the matrices Bf and BF and the vectors a and ap are as defined in reference [6].
The vectors V1 and V2 contain the cylinder nodal displacements and the fluid nodal d.o.f.,
C1 and C2, at the ends of the pipe at x=−L and x=L. The matrix A is defined in
equation (72) of reference [6] so that at the pipe ends

c(−L, r)= g(r) ( C1, c(L, r)= g(r) ( C2. (41)
Consequently, having a node at x= x0, upon inserting the trial function (40) into the
functional LF it becomes

LF =Lf +
q0

v(1+ ihf )
( g(r0) ( [C(x0)+Ca(x0)]. (42)

Thus, the monopole excitation could be directly included as a generalized force vector in
the routines in reference [6].
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4.2.2. Monopole excitation of the equivalent beam elements
When using the equivalent beam theories presented in section 2, the trial function for

the fluid sound pressure is, as in reference [7],

p= rfv cos (nf)c, c= f(x)rn. (43)

From equations (26) and (27) of reference [7], and upon neglecting the fluid compressibility
and axial inertia, LF and Bfc are

LF =Lf +
q0rn

0

v(1+ ihf)
(f+ fa)d(x− x0),

Lf =−
prf

1+ ihf
R2n g [nf af ] dx,

Bfc = pvrfRn+1 g [ f aw+ fwa] dx. (44)

The functional L=Lcyl −LF −Bfc is stationary for the true motion. Only the latter two
functionals depend on the fluid motion and, upon taking the variation of f a, it is possible
to solve for f:

f=
(1+ ihf )v

nRn−1 w+
(r0/R)n

prfvRn

q0

n
d(x− x0). (45)

Now, the variations of wa and ua in Lcyl are taken and the value of f above is inserted into
the resulting equations. The equations of motion for the equivalent Timoshenko beam are
then found to be equation (33a) and

GAKn
1

1x 0u+
1w
1x1−(Kw −v2Me )w=−0r0

r1
n Rq0

n
d(x− x0). (46)

Consequently (see equation (33)), the monopole source acts as a point force on the
equivalent beam with magnitude

f0 = (r0/R)nRq0/n. (47)

The radial response of the pipe to a monopole source at r0 =3R/4 has been calculated
by using the spectral finite element formulation for the equivalent Timoshenko beam and
the routines in reference [6] with the excitation as in equation (42). The calculations were
made for n=1, 2, . . . , 25. In Figures 12(a) and 12(b) are shown the magnitude and phase
of the transfer mobility −ivw/q0 for a water filled steel pipe with wall thickness Tc =R/60.
In Figure 13 is shown the overestimation of velocity level resulting from using the beam
theory for pipes with wall thickness Tc =R/20 and Tc =R/180. At low frequencies and
around the cut-on frequencies, the results are in good agreement. The beam theory
overestimates the transfer mobility somewhat, most probably because the fluid is assumed
to be incompressible. Even so, up to the frequency limits given in section 2.1.2, the errors
(in narrow bands) are only 2 dB for the thick walled pipe and even less for the thin walled
pipe.

4.2.3. Input power
When using the equivalent beam theories, the monopole source acts as an equivalent

mechanical point source with magnitude as given in equation (47). This equivalent force
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Figure 12. (a) The magnitude of the transfer mobility; monopole at r=3R/4 to radial velocity of pipe-wall,
Tc =R/60. –––, Arnold and Warburton theory; ----, equivalent Timoshenko beam. (b) As (a) but the argument
of the mobility.

is a function of n and it is therefore difficult to find simple expressions for the input power,
such as for a mechanical point force, equation (36). Equation (35), however, may be used
to find frequency averages of input power. Another approach, valid also for narrow band
calculation, is to use the spectral finite element formulation, presented in section 2.2. In
this case, the input power, with the n=0 modes disregarded, is given by

Pin = s
n=1

Re ( f0(n)(−ivwn )*), (48)

where wn is the resulting radial displacement for the trigonometric order n and where f0

is given in equation (47). Similarly, when using the routines in reference [6], it should be
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Figure 13. The error in velocity level of radial pipe vibrations excited by a fluid monopole source at r=3R/4.
Overestimation of the equivalent Timoshenko beam theory compared to Arnold and Warburton theory. Upper,
Tc =R/20: lower, Tc =R/180.

possible to calculate the input power from the generalized force vector defined by equation
(42) and the generalized nodal displacements C. A more independent calculation, however,
results from considering the energy flow away from the source. The input power is then,
by symmetry, calculated as twice the axial energy flow in the pipe. The intensity in thin
walled cylindrical shells was calculated by Langley, using the Arnold and Warburton
theory [9]. This result and the standard expression for the intensity in a fluid described
by Helmholtz equation are used to formulate the energy flow in fluid filled pipes.

In Figure 14 are shown the input power in the modes n=1, 2, . . . 8 for a water filled
steel pipe with wall thickness Tc =R/20. As for the mechanical point source, the input
power is accurately calculated by the beam theory for frequencies around cut-on. Below

Figure 14. The input power from a fluid monopole source at r=3R/4 in modes n=1, 2, . . . , 8; Tc =R/20.
–––, Arnold and Warburton theory; ----, equivalent Timoshenko beam.
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Figure 15. The error in the input power level from a fluid monopole source at r=3R/4. Overestimation of
the equivalent Timoshenko beam theory compared to Arnold and Warburton theory. –––, Tc=R/20; ----,
Tc =R/60; · · · , Tc =R/180.

the cut-on frequencies there are only evanescent modes in the pipe which, if there is
damping, may accept a small amount of input power. Most of these modes are neglected
by the beam theory, this probably explaining the (quite irrelevant) underestimation of the
input power for frequencies well below cut-on. At frequencies well above cut-on, the
equivalent beam theory greatly overestimates the input power. Most probably, this is
caused by errors in the assumed frequency independent shape function for the fluid motion,
equation (43). As discussed in section 4.1, the accurate solution for the fluid velocity
potential of the propagating modes is a modified Bessel function of the first kind. This
function has, when the wavenumber is large, an approximately exponential decay away
from the pipe-wall. The rate of this decay increases as frequency increases and thus the
modal amplitude of the fluid–monopole source strength decreases. This behaviour of the
accurate solution is not captured by the beam theory.

The total input power is predominantly given by the n=1 beam mode and by those
modes that are near cut-on. In Figure 15 are shown the errors in narrow bands of the sum
of the input power in the modes n=1, 2, . . . , 25, for water filled steel pipes with wall
thickness Tc =R/20, Tc =R/60 and Tc =R/180. As can be seen, the errors are very small
up to the limits given in section 2.1.2.

5. CONCLUSIONS

Simple expressions for the modal density of straight fluid filled pipes and for the input
power from mechanical and fluid point sources have been derived. The derivations are
based on the simplified equations of motion for fluid filled pipes originally presented in
reference [7]. In section 2 these equations were recapitulated and criteria for their
application were given. The accuracy of the resulting expressions for modal density and
input power were verified by the spectral FE method presented in reference [6]. Explicit
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calculations were made for water filled steel pipes, and the analysis in reference [7] indicates
that the results also apply for fluid filled pipes made of other materials.

The vibrational motion of pipes was described by using a Fourier decomposition of the
circumferential dependence. The axisymmetric, n=0, modes were not considered here.
For each of the other trigonometric orders n=1, 2, . . . , there are at lower frequencies
(below half the ring-frequency and below the cut-on frequencies for higher order fluid
modes) only one radial–axial mode that may propagate. It is the modal density of these
modes that has been considered. Two approximations were derived. One simple formula
was derived from Langley’s expression for empty cylinders [10] by including the inertia of
the fluid as in the equivalent beam theories. The other approximation was derived on a
waveguide basis, with the modal density for each trigonometric order being considered
individually. In this case, each order is a one-dimensional system for which the modal
density is found from the wavenumbers of propagating waves. By using this
approximation, account is taken of the increase of the modal density around cut-on
frequencies. It is also possible to identify the modal density of different trigonometric
orders and of modes being of ‘‘type 1’’ and ‘‘type 2’’ [10]. Within the frequency limits of
the simplified beam theory (as given in section 2.1.2) the accuracy of the closed form
expression is comparable to those previously reported for in-vacuo cylinders [9, 10]. The
more accurate waveguide expression is almost exact when compared to one-third octave
band averages of the modal density calculated by using accurate thin walled cylinder theory
and Helmholtz equation for the fluid.

A spectral FE formulation for the equivalent beam theory was presented. By using this,
the mechanical point mobility was calculated and compared to the results from reference
[6]. For each trigonometric order, the results show good agreement below and around its
cut-on frequency. At even higher frequencies, the magnitude of the point mobility is
underestimated and the phase is in gross error. Possible causes for these discrepancies are
the neglect of the flexibility in the evanescent higher order structural modes and the
overestimation of the fluid inertia. The total point mobility is predominantly given by the
modes that are near cut-on. These modes are accurately modelled by the equivalent beam
theory and, consequently, the total point mobility shows very good accuracy.

Frequency averaged input power from a mechanical point source was, as in reference
[25], calculated as a function of the modal mass and modal density. By using the Euler
beam approximation of the mode shapes and the Timoshenko beam approximation of the
modal density, the input power was calculated in one-third octave bands with an error that
is less than 1 dB. Alternatively, neglecting the in-plane inertia of the cylinder and using
the closed form expression for the modal density results in a very neat formula. By using
this formula, for frequencies above the cut-on frequency of the n=2 mode and below half
the ring frequency, the input power was estimated in octave bands with an error that is
no more than 3 dB.

Monopole excitation was included here in the spectral FE formulation in reference [6]
as a generalized force vector. It was also included in the equivalent Timoshenko beam
formulation as an equivalent force on the beam. Comparing these formulations shows, as
for the mechanical point force, good agreement below and around the cut-on frequencies.
At frequencies well above cut-on, the discrepancies are, however, larger in this case. This
is most probably because the beam theory does not account for the change at higher
frequencies of the fluid mode shapes, and thus not for the change of the value of the
generalized force. For a monopole at r=3R/4, the total input power for all trigonometric
orders was calculated with the equivalent beam theory and the routines from reference [6].
Up to the frequency limits given for the beam theory, the results agree to within 1 dB in
narrow bands.



. 728

ACKNOWLEDGMENT

The financial support of TFR, Sweden, and EPSRC, U.K., is gratefully acknowledged.

REFERENCES

1. F. J. F 1994 Transactions of the Royal Society of London, Series A 346, 431–447. Statistical
energy analysis: a critical overview.

2. R. H. L and R. G. DJ 1995 Theory and Application of SEA. London:
Butterworth–Heinemann.

3. R. J. M. C 1996 Sound Transmission through Buildings Using Statistical Energy Analysis.
Aldershot: Gower.

4. S. F 1997 Proceedings of the 6th International Conference on Recent Advances in
Structural Dynamics, Southampton, 613–627. Vibration energy transmission in fluid-filled pipes
connected with flanges.

5. S. F 1997 Proceedings of the IUTAM Symposium on Statistical Energy Analysis,
Southampton. Statistical energy analysis of fluid-filled pipes (will be published by Kluwer
academic publishers).

6. S. F 1996 Journal of Sound and Vibration 199, 125–154. Spectral finite element analysis
of vibration of straight fluid-filled pipes with flanges.

7. S. F 1997 Journal of Sound and Vibration 208, 685–703. Simplified equations of motion
for the radial–axial vibrations of fluid filled pipes.

8. R. N. A and G. B. W 1949 Proceedings of the Royal Society of London, Series
A 197, 238–256. Flexural vibrations of the walls of thin cylindrical shells having freely supported
ends.

9. R. S. L 1994 Journal of Sound and Vibration 169, 29–42. Wave motion and energy flow
in cylindrical shells.

10. C. R. F and F. J. F 1982 Journal of Sound and Vibration 81, 501–518. Characteristics
of wave propagation in cylindrical elastic shells filled with fluid.

11. M. H 1962 Journal of the Acoustical Society of America 34, 1553–1557. Vibrations of
point-driven cylindrical shells.

12. R. S. L 1994 Journal of Sound and Vibration 169, 43–53. The modal density and mode
count of thin cylinders and curved panels.

13. F. J. F Journal of Sound and Vibration 13, 171–194. Response of a cylinder to random sound
in the contained fluid.

14. M. P. N and A. P 1991 Applied Acoustics 33, 313–336. Universal prediction schemes
for estimating flow-induced industrial pipeline noise and vibration.

15. C. R. F 1983 Journal of Sound and Vibration 87, 409–427. The input mobility of an infinite
circular cylindrical elastic shell with fluid.

16. M. M̈, M. H and K. H. G 1986 Acustica 60, 34–44. Zur schallausbreitung in
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